Date:
Page: 1 sur 2

La prise de terre

5. Application

Nous allons dimensionner la prise de terre de l'habitation de **Monsieur Sisbisse**. Cette dernière est constituée d'un piquet métallique de **2 m** planté dans le jardin dont **le terrain est constitué de limon**.

Relevez sur vos documents ressource la valeur indicative (valeur donnée par la norme NF C 15-100) de la résistivité ρ_{min} et ρ_{max} du sol constitutif du jardin.

Le sol est constitué de limon, la résistivité ρ varie de ρ_{min} = 20 à ρ_{max} = 100 Ω . m.

Pour chacune des valeurs indicatives de résistivité précédentes, calculez la résistance de prise de terre R_{min} et R_{max} qu'on peut espérer en appliquant la formule suivante :

$$R = \frac{\rho}{L}$$

Dans cette formule, L est la longueur du piquet de terre.

Notre piquet de terre mesure 2m, donc :

$$R_{min} = \frac{\rho_{min}}{L} \quad R_{min} = \frac{20}{2} \quad R_{min} = 10$$

$$R_{max} = \frac{\rho_{max}}{L} \quad R_{max} = \frac{100}{2} \quad R_{max} = 50$$

Les valeurs indicatives de la résistance de la prise de terre varient entre $R_{min} = 10 \ \Omega$

et R_{max} 50 Ω

Pour chacune des valeurs de résistance de prise de terre R_{min} et R_{max} calculées précédemment et pour un courant de déclenchement du disjoncteur différentiel $I_{\Delta n}$ de 500 mA, calculez les valeurs prévisibles de la tension de contact U_{Cmin} et U_{Cmax} ?

$$U_{Cmax} = R \times I_{\Delta n}$$
 $U_{Cmax} = 50 \times 0.5$ $U_{Cmax} = 25$

$$U_{Cmin} = R \times I_{An}$$
 $U_{Cmin} = 10 \times 0.5$ $U_{Cmin} = 5$

La tension de contact U_C peut varier entre $U_{Cmin} = 5 \text{ V et } U_{Cmax} = 25 \text{ V}$.

Y a t'il danger pour les utilisateurs des équipements électrique avec les valeurs de résistances précédemment retenues ?

Pour les deux valeurs de résistivité du terrain, la valeur de la tension de contact U_C est sans danger pour les utilisateurs car elle est inférieure à la tension limite de sécurité U_L de 50 V alternatifs.

Quelle valeur de résistance de la prise de terre allons-nous retenir ? Pourquoi ?

Nous ne retiendrons que la valeur de résistance de la prise de terre la plus élevée (R_{max}) puisque c'est celle qui donne la tension de contact qui est la plus élevée (U_{Cmax}) donc la plus dangereuse. La situation la plus dangereuse donc est celle correspondant à ρ_{max} .

Date:
Page: 2 sur 2

La prise de terre

Pour la même prise de terre (piquet de 2 m de long) mais située en région maritime (nature du terrain : sable silicieux), quelles valeurs de résistances R_{min} et R_{max} peut-on espérer ?

Le terrain est constitué de sable silicieux dont la résistivité ρ varie de 200 à 3000 Ω . m. Le piquet mesure 2 m, donc :

$$R_{min} = \frac{\rho_{min}}{I}$$
 $R_{min} = \frac{200}{2}$ $R_{min} = 100$

$$R_{max} = \frac{\rho_{max}}{I}$$
 $R_{max} = \frac{3000}{2}$ $R_{max} = 1500$

Les valeurs de la résistance de la prise de terre varient entre 100 et 1500 Ω

Si le courant de déclenchement du disjoncteur différentiel $I_{\Delta n}$ est de 500 mA, quelle est la valeur de la tension de contact U_C que nous retiendrons (rappel : la tension du réseau est de 230 V).

$$U_{C} = R \times I_{An}$$
 $U_{C} = 1500 \times 0.5$ $U_{C} = 750$

La tension de contact U_C ne peut pas être supérieure à la tension du réseau. Le courant de défaut ne pourra donc pas atteindre 500 mA, il aura pour valeur maximale :

$$I_d = \frac{U}{R}$$
 $I_d = \frac{230}{1500}$ $I_d = 0.153$

La valeur maximale du courant de défaut I_d sera de 153 mA sous une tension de 230 V et pour une résistance de prise de terre de 1500 Ω

Cette valeur de la résistance de la prise de terre est-elle satisfaisante ? Proposez une solution ?

Cette valeur de résistance de la prise de terre est beaucoup trop élevée, le DDR ne déclenchera pas. Pour remédier à cela, il faut réaliser une prise de terre en boucle à fond de fouille (possible avant la construction) ou en tranchée avec un conducteur plus long.

Calculez la valeur de la résistance maximale R_{max} de la prise de terre pour avoir un courant de défaut supérieur à 500 mA.

$$R_{max} = \frac{U_C}{I_{An}}$$
 $R_{max} = \frac{50}{0.5}$ $R_{max} = 100$

Afin de garantir une tension de contact U_C inférieure à 50 Vac, la résistance de la prise de terre devra être inférieure à 100 Ω afin de rester compatible avec un DDR de 500 mA.

Calculez la longueur L_{min} du conducteur à enterrer pour avoir cette valeur de résistance.

$$L_{min} = \frac{\rho_{max}}{R}$$
 $L_{min} = \frac{3000}{100}$ $L_{min} = 30$

La longueur L_{min} du conducteur de cuivre nu de 25 mm² à enterrer devra être au minimum de 30 m pour avoir une résistance de prise de terre de moins de 100 Ω